

FMEA of CO₂ Air Conditioning Systems

On SAE 2000 Automotive Alternative Refrigerant Systems Symposium July 11-13, 2000, Resort Suites Hotel, Scottsdale, AZ

by Dr.-Ing. Ulrich Hussels

RISA Sicherheitsanalysen GmbH, Germany

e-mail: ulrich.hussels@risa.de

The RISA Company

- Founded in 1990, situated in Berlin, Germany
- 10 specialized engineers from research institutes of the Technical University of Berlin
- Working areas are safety analysis and software development (databases)
- Customers from nuclear-, automotiveand LPG-industry

Where this kind of Analysis is needed (examples):

- Higher amount of energy in a small amount of space (high energy density)
- Nuclear Power Plants: reactor core cooling, pressure
- Automotive: velocity, pressure
- LPG: great amount of inflammable and explosive fluid/gas mixture

Initiators and Core Team members

- Robert Mager, BMW AG (Chairman)
- Jürgen Wertenbach, DaimlerChrysler AG
- Baroto Adiprasito, Volkswagen AG
- Ralf Köneke, Denso Automotive Deutschland
- Frank Obrist, Obrist Engineering

Aims of the analysis for a prototypical CO₂ AC-System

- Diagnosis of potential effects of failure events
- Determination of countermeasures
- Proof of mastering all relevant effects
- Confirmation of the usability of CO₂technology regarding to safety and product liability
- System-FMEA as a basis for a design-FMEA

Form of the Analysis

- System-FMEA based on SAE J-1739
- Additional classification for consequences to human health
- Instructions to reduce the risk priority number if it is greater than 108 to get a balanced risk level over all failure events

Risk Priority Number

RPN = Severity x Occurrence x Detection

Severity 1 - 10 (8 = Very High, 9 Hazardous with warning)

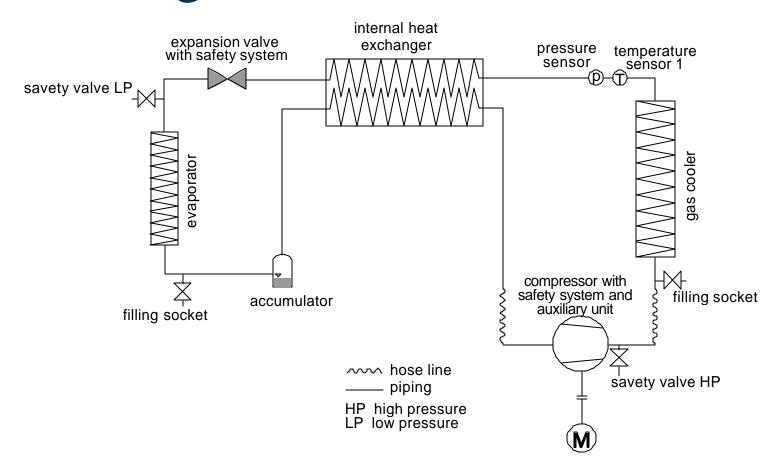
Occurrence 1 - 10 (4 - 6 = Moderate)

Detection 1 - 10 (3 = High)

P RPN 1 - 1000 (9 x 4 x 3 = 108, according to an engineering judgement)

Table-Layout

Item	Function	Potential Failure Mode	Potential Effect(s) of Failure	Sev Class	Potential Cause(s)/ Mechanism(s) of Failure	Occur	Current Design Controls	Detec	RPN	Recommended Action(s)	Responsibility (for the Recommended Action)	Actions Taken	Sev	³⁰ О	Det	RPN
Com-	Transports	Loosening	Refrigerant	9 B	Material faults,	1	Quality control	2	18	Oscillation			9	1	1	9
pressor	the medium;	of fasten-	pipe de-		loosening of fas-					tests						
	Compresses	ings	taches, ex-		tenings											
	the medium		ternal leaks													
Gas	Conducts	Blockage	Low cooling	6 A	Bends, blockages	2	Deformation	10	120	Parallel proce-			6	2	6	72
cooler	heat to the	in refriger-	capacity,				guard, layout;			dures, pres-						
	external	ant flow	increase in				design of com-			sure sensor						
	environment		pressure				ponent			switched in						
										front of the gas						
										cooler, plausi-						
										bility control						
										via regulation						1
										control						



Scope of the Analysis

- 23 components within the system with
- 107 failure events in respect to
- 3 operating modes,
- 3 (+2) vehicle running modes and
- 3 environment conditions

PI-Diagram

Results

- An automotive CO₂ AC-system is safe:
- General rules for the arrangement of the components have to be taken into account
- Safety components and/or systems have to be present
- Critical components are detected

Outlook

- Development of common safetystandards for an automotive CO₂ ACsystem
- Systematic sampling of all failure events from existing prototype-systems
- Evaluation of specific failure rates during the operation of prototype system hours
- Performing a fault- and event tree analysis

Further Activities

Further activities should be done to gain international acceptance