
Using FMEA for early robustness analysis of Web-based systems

Jianyun Zhou, Tor Stålhane
Department of Computer and Information Science, Norwegian University of Science and

Technology, 7491 Trondheim, Norway
{jianyun,staalhane}@idi.ntnu.no

1. Introduction

Time pressure and quality issues are two main
challenges facing today’s web development
professionals. To achieve quick development of high-
quality systems, a lot of methods and techniques have
been proposed. A widely recognized strategy in current
practice is to emphasize early quality assurance
techniques, as the late detection of defects are well
known to be expensive and time-consuming. In this
paper we take robustness as a critically important
quality attribute, and propose a general framework for
conducting early robustness analysis for web-based
systems, based on Jacobson’s analysis method [1] and
FMEA (failure mode and effect analysis) [2].

2. Robustness concept

Giving a clear definition to robustness is not easy,
especially when it is mentioned together with
reliability. An elegant way to distinguish between them
is to look at the types of faults that caused a problem.
While reliability problem is often caused by internal
faults within the system or component, robustness
failure is caused by external faults rising from the
operational environment, such as an unexpected input.

To formalise the difference, let’s introduce a
partition model for all the system operational
conditions. It can be divided into three parts: SD, FD,
and UD. SD (standard domain) refers to the set of all
operational conditions for which a system satisfies its
specification. FD (failure domain), refer to the set of
all operational conditions for which the behavior of the
system contradicts the specification. UD (unanticipated
domain) contains the set of all operational conditions
which are not included in the specification.

Figure 1 A partition over all operational conditions

Reliability is related to the failure domain. The
smaller the failure domain is, the more reliable is the
system. When FD = {}, the system is said to be correct
regardless of whether UD is empty or not. Robustness
concerns unanticipated domain. To improve
robustness, measures should be taken to either enlarge
the range of specification (completeness), or ensure
system stability under unexpected environment.

This feature is very important for a successful web-
based system. For the first, Web-based systems are
accessed via the HTTP protocol, which has made such
systems available everywhere. It is difficult, if not
impossible, to control the input profile of end users.
Web-based systems must have tolerance to errors and
unexpected interactions from user environment.
Secondly, Web-based systems are often not developed
separately, integrating with existing systems
(components or legacy systems) that are not produced
specifically for the Web-based system. They must
therefore be able to tolerate errors and unexpected
interactions caused by these subsystems.

3. Robustness analysis method

As errors and misconceptions found in later phases
of the system development process are expensive and
time-consuming to fix, it is evident that a meticulous
analysis of the system and its behavior should be
carried out as early as possible in the development
process. In this section we will present a robustness
analysis framework that can be applied during analysis
and preliminary design phases, based on Jacobson’s
analysis method and FMEA (failure mode and effect
analysis method). The main purpose is to find
robustness-critical elements of the system, and to
identify preventive actions.

FD

UD
SD

FD

UD
SD 3.1. The role of Jacobson’s analysis method

To propose such a framework, what are needed are
two essential tools: one is a principled approach to
modeling, and the other is a systematic method for
carrying out analysis. For the purpose of modeling, we

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

use Jacobson’s analysis method. Like other modeling
techniques, it captures the essential knowledge of the
system. Unlike other techniques, it captures system’s
behavioral aspects, while not structural properties. This
is the key feature that makes the method feasible in our
framework. At early stages of the development cycle
little information about system structure is available.

Jacobson’s analysis method is based on Use Cases.
By analyzing each use case, it identifies a set of objects
that will participate in the use case, and classifies them
into one of the following three stereotypes: Boundary
objects, which the actors use when communicating
with the system; Entity objects, which are usually
objects from the domain model; Control objects, which
server as the “glue” between boundary objects and
entity objects.

Correspondingly, in a web-based system, boundary
objects refer to the objects that the users will use to
interact with the system. These are elements that
compose a web page, such as hypertext, forms, menus,
buttons, and so on. Entity objects often map to the
database tables and elements in legacy systems. They
represent resources required by use case execution.
Control objects embody mostly application logic. They
serve as mediator between the users and the stored
data. This is where one captures the frequently
changing business rules and policies.

Some rules are also defined to restrict interactions
among these three types of objects:

1. Actors can only talk to boundary objects
2. Boundary objects can only talk to Control

objects and Actors.
3. Entity objects can only talk to Control

objects.
4. Control objects can talk to boundary objects,

other Control objects and Entity objects, but
not to Actors.

The contribution of Jacobson’s method to our
robustness analysis framework is two-fold. Firstly, it
provides a practical and feasible way to model the
system during analysis phase, decomposing the system
into objects. Secondly, as Control objects capture
application logic and manage all interactions between
Boundary objects and Entity objects, they serve as
natural placeholders for carrying out robustness
analysis.

3.2. The role of FMEA

FMEA is a useful technique in risk management. It
considers how each component of a system might fail
and determine their effects on the required system
functions. It is relatively time-consuming and requires
detailed system information. Typically the FMEA is

conducted late in the design process. Our purpose is to
explore the possibility of using it earlier during
analysis and preliminary stages. As a structural
composition model is not available at that time, the
analysis models from Jacobson’s method can serve this
purpose.

FMEA is carried out for each control objects. It
considers all failure modes of each control objects,
possible external causes rising from the operational
environment, chance of occurrence, chance of
detection, and severity of the effects on the system
robustness requirement. The results are typically
presented in a specially designed worksheet.

By combining these results, we can achieve
following objectives:

1. Identify robustness critical elements, that
is, the part of application logic that is
prone to failure due to external errors or
abnormal conditions

2. Rank & prioritize the possible causes of
robustness failures

3. Develop preventive actions, to either
eliminate possible causes or reduce the
effects on system robustness

4. Conclusions

Including quality assurance activities early in the
development process is an efficient way to enhance
system quality. In this paper we have presented a
general framework to carry out early robustness
analysis for web-based systems. The proposed
approach integrates Jacobson’s analysis method and a
light-weighted version of FMEA. As a result, we can
identify robustness critical elements, rank and
prioritize possible causes, and develop preventive
actions.

However, the issue of using these methods in the
proposed framework is not settled by merely outline
such agendas. Many of the steps require research and
effort to show their feasibility. This opens directions
for future work.

5. References

[1] D. Rosenberg and K. Scott, Use Case Driven Object
Modeling with UML: A Practical Approach, Addison-
Wesley, 1999.
[2] J.D. Andrews and T.R. Moss, Reliability and Risk
Assessment, Professional Engineering Publishing Limited,
London and Bury St Edmund, UK, 2002.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

