A DEVELOPMENT OF HAZARD ANALY SIS TO AID SOFTWARE DESIGN

J. A. McDermid and D. J. Pumfrey,
Dependable Computing Systems Centre,
Department of Computer Science,
University of York,
Heslington,

York YO15DD, U.K.

Abstract— This paper describes a technique for software
safety analysis which has been developed with the specific
aim of feeding into and guiding design development. The
method draws on techniques from the chemical industries
Hazard and Operability (HAZOP) analysis, combining this
withwork on softwarefailureclassificationto providea struc-
tured approach to identifying the hazardous failure modes of
new software.

|. INTRODUCTION

Software safety analysis is a focus of much current re-
search, and many methods have been proposed. However,
most of these methods suffer from two problems; they are
difficult to apply at all stages of software development, and
tend to produce large, intractable sets of results from which
it isdifficult to extract useful design guidance.

As part of a study to assess the capabilities of various
software safety analysis methods, we proposed the following
set of desirable properties:

1. The method should be capable of being applied at
all stages of the system lifecycle from initial design
through to validated i mplementation.

2. The method should not involve an excessive incresse
inthe work required at early stages of the design. Ide-
ally, it should allow the system designers to identify
quickly which areas of thedesign are most critical, and
concentrate further analysiswork on those areas.

3. The anaysis should help drive design development
through the comparison of aternatives and the refine-
ment of specifications.

4. Itshould bepossibleto haveahigh degreeof confidence
that thorough application of the method will lead to
consideration of al credible failure modes.

5. The analysis should be in a form which alows the
design to be checked and approved incrementally, per-
mitting closer integration of design / implementation
and verification / vaidation activities.

6. The results of the analysis should be in a form which
issuitablefor inclusionin a safety case.

To assess applicability to all stages of the design and im-
plementation lifecycle, we considered whether amethod con-
tained features to support both inductive and deductive saf ety
assessment techniques — typified by Failure Modes and Ef-
fects Analysis (FMEA) and Fault Tree Analysis respectively

— and alsotwo additiond classesof analysisidentified by [1].
These additiond classes are descriptive and exploratory anal -
ysis, which describe the cases where the causes and effects
of failures are both known (descriptive), and both unknown
(exploratory).

At the earliest stages of design of new software, nothingis
known about its failure modes, and knowledge of the effects
of failurewill generally belimited to ahighlevel preliminary
hazard analysis. However, this is the stage at which it is
easiest and most cost effective to take measures to improve
the safety characteristics of asystem, so exploratory analysis
is particularly important.

We concluded that no software safety analysis technique
proposed so far adequately addressed this requirement for
a structured exploratory analysis of the safety properties of
a completely new software system. This paper presents a
method which we are devel oping to support such an analysis.
Section 1l briefly presents the background and important
conceptsof our method, which isthen described insectionsl ||
and IV, and illustrated by a small example in section V.
Conclusions and an outline of our proposed directions for
further devel opments of thiswork are presentedin section V1.

Il. SELECTION OF METHODS

The development of a completely new analysis technique,
with the attendant problems of convincing potentia users of
itsvalue and overcoming resi stance to completely unfamiliar
procedures and notations, was considered undesirable. In-
stead, we undertook a survey of arange of safety analysis
techniquesfrom variousindustries, and considered their suit-
ability for adaptation to software devel opment.

We concluded that Hazard and Operability Studies (HA-
ZOP) [2], [3], widely used in the chemical, nuclear and food
processing industries, has features which made it an interest-
ing starting point for further work.

The HAZOP system of imaginativeantici pationof hazards
was devel oped to provide, for chemica plants, precisely the
type of structured analysis feeding in to the devel opment of
a new design which we considered lacking in the software
domain. A HAZOP study attempts to identify previousy
unconsidered failure modes by suggesting hypothetical faults
for review and, where necessary, thisis followed by the sug-
gestion of means of overcoming identified hazards.

HAZOP has anumber of featureswhich distinguishit from
other analysis methods such as FMEA, and our work has

concentrated on two of thesefeatureswhich convey particul ar
benefits. These are the concept of flow-based analysis, and
the use of guide words.

Flow-based analysis means that, in the context of a chem-
ica plant, the first focus of analysis is the properties and
behaviour of the flows in the pipelines connecting the ma-
jor components (storage tanks, reactor vessels, pumps etc.)
of the plant. We concluded that this concept could usefully
and effectively be applied to software, if a suitable design
model was used, by considering information flows between
components. This approach has severa potentia benefits
over analyses based on consideration of the function of each
component:

+ In many design methods, the interfaces between parts
of the system are defined before the component im-
plementationisfinalised. A suitable analysis of these
interfacescould provideauseful inputtothelater stages
of design elaboration.

« Theintended behaviour of an interface islikely to be
simpler both to specify and understand than that of an
active component.

+ Ingenerd, thefailuremodes conceivablefor interfaces
are more restricted than those of active components.
Thismay help to contain complexity and limit thesize
of theresults.

It isimportant to note that the term flow as used in this paper
is not specifically data or control flow, since both must be
considered as part of the analysis.

For each flow, a set of guide wordsis used to prompt con-
sideration of hypothetical failures, known as deviations, from
the intended characteristics and behaviour. If a hypothetical
failure suggested by the guide words can be shown to have
both conceivable cause(s) and hazardous consequences, itisa
meaningful failure mode, and consideration must be given to
measures which can be taken to remove its causes or limit its
effects. These guide words provide the structure of the anal-
ysis and, if suitable guide words are selected and correctly
applied, can give confidence in the coverage achieved.

A critical featureof theprocessindustries HAZOPisthat it
isateam activity, and great emphasisisplaced on the selection
of appropriate team members. Their diversity of knowledge
and experience helpsto ensure athorough investigation of all
properties of the system, and the interdisciplinary approach
helps to prevent one person or group solving a problem in
a way which will creste new problems in other areas. We
believe that a similar team approach is appropriate for soft-
ware analysis and development, but the composition of the
team will depend on the organisation performing the study,
and this paper does not address thisissue.

The decision to use HAZOP as the basis for our work
favoursthe use of design notationswhich employ astructura
model of the system, i.e. one which partitionsthe systeminto
independent processes or modules and defines the interfaces
(however implemented) between them. Whilst we accept
that a structural model alone is not sufficient to fully specify

a system, and must be supported by other models (eg. a
state-based model), it is appropriate for the first stages of
design of most systems, and can be applied from avery high
(context) level down to arelatively detailed level. Thus, even
if the method we develop is not, of itself, sufficient for a
total safety analysis of asystem, it should at least be suitable
for identifying those parts of the system where other more
detailed safety analysis techniques must be used.

Although we believe the techniques we are developing
could readily be applied to a wide range of methods and
notations, it was necessary to select one notation as the basis
for our initial effort at designing a “ software HAZOP". We
selected MASCOT 3 [4], since MASCOT's communication
pathscorrespond closely to our concept of information flows.

The principal components of a MASCOT design decom-
position are activities — fundamental processing e ements,
conceptualy executed in paralel — and Intercommunication
Data Areas (I DAs) — passive components which encapsul ate
the mechanisms through which the activities communicate
and share data. The fault transformations possible within
apassive IDA are much more restricted than those possible
within an activity, providing good fault containment proper-
tiesintheimplementation, and an effective basisfor analysis.

A further attraction of MASCOT is the strong mapping
between a MASCOT design and the eventua implementa-
tion. The structure of the code is developed directly from a
textua representation of the design diagrams, supplemented
by definitionsof datatypesand the executable code. Thuswe
can have confidence that analysis results a the architectura
design level will remain valid for the implementation.

I1l. METHOD OUTLINE

Wefirst briefly describe other approaches toHAZ OP based
software safety analysisin order toidentify limitationswhich
we intend our method to overcome.

A. Other approaches

A number of recent papers [5], [6], [7] have suggested
adaptations of HAZOP to the software environment.

Burns and Pitblado [5] propose three separate studies for
programmable systems which control or monitor plant or
machinery:

1. Aninitia “conventiona” HAZOP studying the plant
to be controlled, using the guide words and method
outlined above.

2. A more detailed Programmable Electronic System
(PE.S) HAZOP study of the computer or Pro-
grammable Logic Controller (PLC) systems control-
ling a plant, considering deviations in SSIGNALS and
ACTIONS, using the guide words NO, MORE, LESS
and WRONG.

3. A human factors HAZOP.

Of these, the PE.S. HAZOP is closest to our intended appli-
cation, but the paper impliesthat this study isintended to be

conducted at thelevel of theexterna interfacesof the system.

J. V. Earthy’s short paper [7] presents little more than an
overview of some possibilities for adapting HAZOP tech-
niques to software. Again, the recommendation appears to
be to apply the analysis at the level of interfaces, in thiscase
between processor, storage devices and peripherals. At a
lower level, data flow diagrams are identified as a suitable
model for analysis, subject to verification that they represent
the system as built, but thisoverview does not suggest details
of amethod or propose guide words.

Cambridge Consultants modification of HAZOP de-
scribed in Chudleigh’s paper [6] most closely matches the
method we are developing. Data flow diagrams are used asa
basisfor theanaysis, atable of guide wordsand the parame-
ters to which they apply is presented, and a brief description
is given of the manner in which they are applied. However,
the method does not follow the principles of the process in-
dustries HAZOP method in that, although deviationsin the
input data flows are considered, the processes (components)
themselves are analysed to determine possible deviations of
the process outputs. Mention is aso made of the review of
the analysis of data flows entering and leaving the diagram
from and to a higher level of the hierarchy.

The anaysis of activities as well as data flows seems to
complicatetheanaysisunnecessarily; any meaningful failure
of aprocessmust eventually manifest itself asadeviationat an
output of that processand, provided the anaysis of the output
flowsisthorough, will beconsi dered when possiblecausesare
sought for that deviation. A consegquence of thiscomplication
isthat, although the set of guidewords presented isrelatively
large, it isdifficult to be confident that they provide complete
coverage of dl crediblefailuremodes. Indevel oping our own
method and sel ecting the guide words we have attempted to
address these criticisms.

B. Our method

It is important to state that the intention of this analysis
method is only to assess the safety or otherwise of the appli-
cation software. It assumes that the operating environment
(i.e. the MASCOT run-time system) is error free, and cor-
rectly enforces thefundamental MASCOT principlessuch as
independence of processes, and i nter-process communication
vialDAs.

Although we recognise the potential benefits to software
system devel opment of a team approach to analysis and de-
signreview, it is hard to define the environment in which the
method is applied, and our work so far has concentrated on
defining the procedure and guide words.

The basic unit for anadysis of a software designisasingle
MASCOT drawing representing asystem or subsystem. This
system or subsystem consists of components — i.e. MAS-
COT activities and IDAs and external devices — connected
by information flows. These flows may be MASCOT paths,
or device-server interfaces. Separate tables are produced for
each MASCOT diagram, withthe MASCOT hierarchy defin-

ing the relationship between the tables. The process begins
withthetop-level (context) MASCOT diagram of the system.

The major steps of the method are;

1. Theflowsinthediagram areidentified and consistently
labeled.

2. Thedesignisreviewed to ensure that the intended op-
eration is clear. At this stage, various context infor-
mation is recorded. Thisismainly atextua form of
the information contained in the MASCOT notation,
and could be supplied automatically by a suitabletool.
However, path protocols, which describe the commu-
nication and synchronisation models of each flow, are
not shown in MASCOT, and must be added.

3. A tableof guide wordsis constructed, as described in
section IV

4. The appropriate set of guide words is considered for
each flow. Each guide word may suggest one or more
hypothetical failure modes, which are recorded.

5. Thepotential causes of each identified fault are deter-

mined.
This stage is a deductive analysis (i.e. similar to Fault
Tree analysis), searching for possible causes of the
hypothetical failure in the component where the flow
originates.

6. The effects of each hypothetica fault are considered
and recorded. Wherenecessary, the effectsof the hypo-
thetical fault in combination with normal states, nor-
mal eventsor other faultsoccurring simultaneously are
also considered.
Thisstepisaninductiveanaysis(i.e.ssimilar toFMEA)
of theeffects of thehypothetical fault on the destination
component of the flow.

7. The set of hypothetical faults is reduced to a set of
meaningful faults by discarding those for which the
potentia causes are acceptably improbable, and those
for which no hazardous effects have been identified.
Animportant featureof themethod isthat ajustification
must be given whenever a hypothetical failuremodeis
discarded. Inmost casesthiswill beasimplestatement,
but where the decision is difficult it may be necessary
to supply a more complete argument.

8. For each meaningful failure mode identified, aterna-
tive strategies are suggested for removing its causes or
limiting its effects. These may take the form of design
modifications or a set of requirements which must be
satisfied by lower-level design elaboration to achieve
acceptable system-level safety properties.

The final step is selection of one of these strategiesto
pursue, and recording a justification for the selection.

When the design of the current level of decomposition is
satisfactory, the first-cut design for the next level of decom-
positionis produced, taking account of any new requirements
derived from the analysis, and the process begins again at the
new level.

C. Application of the method

One of the most obvious over-simplifications in this out-
line method is that it assumes that system development will
always proceed top-down, and that the role of the analysisis
simply to refine the specification of lower level subsystems.
Once defined these specificationswill only be changed if re-
quirements change at a higher level, or it proves impossible
to meet the specification, prompting are-design. Thisisquite
clearly at odds both with the reality of system development
and with our stated aim of producing a method appropriateto
all stages of amore integrated system lifecycle.

The top-down devel opment mode is attractive because of
its simplicity; it consists of a sequence of steps which are
simply repeated at successively more detailed levels until
there is nothing to be gained from further decomposition.
It is well suited to an environment where many people are
involved in the development of a system, particularly if parts
of the system are to be subcontracted to other departments or
companies.

In practice, however, rigid adherence to this model is too
inflexible— therearemany factorswhich canlead toasystem
being developed in quite different ways. For example, a new
system may bere-using parts of an existing system, for which
no safety analysishasbeen carried out. Alternatively, thesys-
tem may be based on alibrary of standard |ow-level routines,
e.g. hardware interfaces or common functions, which have
well-known properties. Another common approach is for
parts of the system which are seen as difficult in someway to
be either prototyped or fully implemented first, and the rest
of the system built around these core parts. The integrated
method must be sufficiently flexible to accommodate all of
these scenarios.

To provide acceptable support for these different patterns
of devel opment, we have defined asecond rolefor the method,
namely as ameans of recording design assumptions affecting
safety. Thisis based on the observation that at all stages of
design, up to and even including actual coding, the imple-
mentor(s) of asystem are making implicit assumptions about
theway that other partsof the system will function. The only
change required to the outline given above isthat, instead of
specifying what is required of subsystems at a given level,
the analyst records the anticipated failure properties of each
subsystem, based on an assumed implementation, and then
uses these to determine whether the current level of decom-
position will meet the properties which were assumed when
it was defined at a higher level.

This approach attempts to take advantage of the way in
which system implementorswork. It isfar lessrigid than the
system of progressive specification refinement and, assuch, is
probably better suited tothelower level s of system designand
implementation, or to small systemswhich will be devel oped
by one person or a small team. Its biggest disadvantage is
that it is extremely difficult to concisely express what may
be a very complex set of assumptions about the expected
implementation of a system or component. One of our aims

in our research is to find an appropriate balance between
complexity and utility in representing assumptions.

These two models of development are not incompatible.
Indeed, even if aprogressive refinement approach is adopted
rigorously, the anaysts should, in specifying the require-
mentsfor a subsystem, consider possi bl e implementations of
that subsystem (i.e. make assumptions) and set requirements
which are believed to be reasonable and attainable.

IV. SELECTION OF GUIDE WORDS

Since the set of guide words used for HAZOP analysisin
the process industries has been devel oped and refined over a
considerable period of time, the interpretation of each guide
word in a given situation is well understood, and there is a
high degree of confidence that systematic application of the
complete set of guide words, by a suitably qualified team of
people, will result in a complete analysis of all the important
failure modes of the plant.

Traditional analysi s techniques have concentrated on iden-
tifying rather than classifying failures. However, a consider-
able amount of research has been carried out into the classi-
fication of software failures, and this provides the basis for
proposing a means of devel oping sets of guide wordswith a
high degree of confidence in their completeness.

Recent publicationsin this area include [8] and [9]. The
categori sations proposed by both papersare similar, athough
that proposed by Bondavalli and Simoncini [9] is of more
interest to this work, since it explicitly examines the de-
tectability of faults, an important property when considering
strategies for handling failures.

The categorisations they propose are based on considera
tion of a service — usefully analogous to our model of an
information flow. The provision of a service is specified in
terms of two parameters; the value associated with it, and the
time at which this value is presented. The value domain is
divided into four categories; correct, subtleincorrect, coarse
incorrect and omission. The distinction between subtle and
coarse incorrectness is that subtly incorrect values cannot be
detected. The time domain, similarly, is divided into four;
correctly timed, early, late and infinitely late. Bondavalli and
Simoncini’s summary of the possible combinations of time
and valuefaults, and how they may be detected, isreproduced
intablel.

The distinction between an omission in the value domain
and infinite lateness is assumed to be made by a perfect ob-
server, who has knowledge of theinternal state of the system
providingtheservice. In practice, asthetable shows, the two
areindistinguishableto a user of the service, and can only be
detected by their timing behaviour.

A problemwith this scheme isthat thereisno combination
of time and value categories which reasonably accommo-
dates the case of afaulty system which emits some sort of
output when a correctly functioning system would not have
emitted any output at al. It is interesting that Bondavalli
and Simoncini reject the Byzantine fault class proposed by

TABLE : FAULT CLASSES AND DETECTABILITY

Value
, Correctly Subtle .
Time Valued Incorrect Coarse Incorrect Omission
Correctly Correct Undetectable | Detection on value Detection at
timed service failure syntax or semantics Ting
Detectionon | Detection on Detection on val ue Detection at
Early . . Syntax or semantics
time time : Tiny
and/or time
Detectionon | Detection on Detection on val ue Detection at
Late .) Syntax or semantics
time time : Tiny
and/or time
Infinitely Detectionat | Detection at Detection & Ty Detection at
late Ting Ting Ting

Shrivastava and Ezhilchelvan, [8] which expressly includes
events such as completely unexpected output. It isdesirable
for analysis purposes to include this case specifically — we
will use the term commission.

Wetherefore consider that acomplete set of suitablefailure
classesis:

Service provision : OMISSION
COMMISSION
Servicetiming: EARLY
LATE
Servicevalue: COARSE INCORRECT
SUBTLE INCORRECT

These words represent asimilar level of abstraction to the
guide words used for process HAZOP analysis, and could
be employed directly. We believe, however, that there are
be significant advantages in attempting to develop a more
precise set of guide words. In particular, this might make it
easier to produce aformal definition of each word, whichwill
ultimately be useful in automating analysis.

The most obvious way to attempt the definition of more
precise guide words is to consider the interpretation of each
failureclasswhen applied to particular datatypes. At present,
weknow of ho other work which hasattempted to dothis. The
meaning of the valuefailure classes can clearly berefined by
considering thedatatypetowhichthey areapplied. However,
knowledgeof thedatatypeof aflow a oneisinsufficient, since
there are many different path protocols (i.e. communication
models) possibleinMASCOT and it isthese which determine
the timing and service provision characteristics of aflow.

Our proposal isthat, once the data type and path protocol
of each flow in a MASCOT diagram have been established,
guidewords should be defined by considering the interpreta-
tion of each failure class in the context of every combination
of type and protocol. Clearly, where the same types and pro-
tocols are used in many diagrams, this need only be done
once. For some combinationsof datatype and path protocol,

consideration of onefault class may result in the definition of
more than one guideword. The guidewordsthusdefined are
recorded in atable, and the appropriate set selected as each
flow isanalysed.

V. EXAMPLE

To illustratethe application of the method, consider thefol -
lowing example. A prototypefull-authority el ectronicthrottle
controller is to be added to the engine management system
(E.M.S)) of adevelopment vehicle. The mechanical linkage
between the accelerator pedal and the throttle plate will be
replaced by pedal position sensors and a computer controlled
actuator. The requirementsfor the new system are:

« The accelerator pedd will have two independent posi-
tionsensors. Inaddition, therewill betwo independent
switches which will be opened when the accelerator
pedal isreleased and reaches the top of itstravel, so a
wiring or switch failure will appear to signa a closed
throttle.

+ Thethrottlebody will have asingleactuator controlled
by the E.IM.S., which will directly control the position
of the throttle plate. If the actuator is not energised,
amechanica spring and damper system will close the
throttleplate.

« The throttle control software will receive data from
other vehicle systems and E.M.S. subsystems. This
datawill be assembled by a data monitor process, and
supplied to the throttle control software in a single
record to ensure that it is consistent.

« The software shall have two independent channels,
each of which will receive a copy of the data record
from the data monitor process, the signa from one
of the accelerator position sensors and one of the end
stop switches, and independently cal cul ate therequired
throttle plate angle.

« Each channel shall incorporate self-test routinesto de-
tect sensor failures and internal errors.

Throttle_control
Sensor_1 T_A Calc_1

. PosOut
. Data Stat

Switch_1 Status

TPos

(2)
\2J

Output
EMS_Data

Data_In Posl

Outl
Data_dup

Statl

Selector
SOut
Stat2

Pos_Output Actuator

Select .

EMS_Data Din

Out2

EMS_Data

Sensor 2 T_A_Calc_2

Status

(=)
N

TPOuLI_Q TPos
OP1

Throttle_calc

Data Stat

PosOut

TPos

Switch_2

Fig. 1. Initial proposal for the Throttle Control System decomposition

« Thepositionof thethrottleplate shall be updated every
25 ms. It shal normally be controlled by the output
of one channel, unless its self-test routines signal an
error, in which case the other channel shall be used.
If both channels fail, the actuator will be released (de-
energised) to allow themechanical system to close the
throttle.

« The software shall return a record to the E.M.S. con-
taining the commanded throttle position, and a flag
which shall be set if the controller has failed.

The initial design proposal isto partition the softwareinto
five subsystems — the two calculation channels, a process
which duplicatesthe datareceived fromthe E.M.S., aprocess
which monitors the calculation channel’s status and deter-
mines which isto be used, and the output routine containing
the actuator interface. Since the actuator update rateisrela
tively high, all the data flows into the output routineare to be
pools — a destructive read / non-destructive write protocol
which can be implemented to give completely asynchronous
access. Figure 1 represents thisdesign.

This design is subjected to andysis. The flow labels are
shown in small circles on the flows in the diagram, and ta
ble Il shows the guide words derived by applying the failure
classifications to the combinations of path protocol and data
type used in thisdesign. Some comments should be made on
thistable:

1. The categorisation early is shown as not applicable to
the pool protocol, since there is no way in which this
can bedetected by or affect theactivity whichisreading

from the pool.

2. Thecomplexdatatyperepresentsadatastructurewhich
containssevera (possibly related) values, but isalways
passed as asingleitem.

Tablelll showsafragment of theanaysisoutput— thecol -
umn headed M ? records whether a hypothetical failure mode
has been identified as meaningful. This section has been se-
lected because it showsa critical failure mode; consideration
of the guide word OLD DATA applied to flow P2 reveals that
there is a potential race condition, which could result in the
output of a defective channel being used to control the throt-
tle. This arises from the separation of the status and result
outputsof each channel. If ascheduling failure should occur,
it is possible that the error status output by a channel which
has detected an interna failure may not propagate through
the Select subsystem in time to prevent an erroneous result
being read by the Output process. Sincethe Salect subsystem
cannot be guaranteed to compl ete before Output i sschedul ed,
this failure mode is plausible, and a redesign is required to
remove it.

The solution in this case is triviadl — the functionality of
the Salect subsystem is sufficiently small that it can beincor-
porated into the Output subsystem. The calculated throttle
position and status output from each channel are combined
into a single record, and a sequence counter is added, ensur-
ing that Output can & so detect a channel which has stopped
updating its output. This revised design is shown in figure
2, and part of the analysis of the new combined data path is
shownintablelV.

TABLEI : TABLE OF GUIDE WORDS FOR THE THROTTLE CONTROLLER EXAMPLE

Failure Categorisation
Flow ServiceProvision Timing Value
Protocol Data Type || Omission Commission Early Late Subtle Coarse
STUCK ATO
. Boolean NO READ UNWANTED READ | EARLY LATE N/A
Device Input STUCK AT 1
Value NO READ UNWANTED READ | EARLY LATE INCORRECT IN RANGE | OUT OF RANGE
Device Output Value NOWRITE | UNWANTED WRITE | EARLY LATE INCORRECT N/A
Enumerated || NO UPDATE | UNWANTED UPDATE | N/A | OLD DATA INCORRECT N/A
Pool Value NoO UPDATE | UNWANTED UPDATE | N/A | OLD DATA | INCORRECT IN RANGE | OUT OF RANGE
Complex NoO UPDATE | UNWANTED UPDATE | N/A | OLD DATA INCORRECT INCONSISTENT
STUCK ATO
. Boolean NO DATA EXTRA DATA EARLY LATE N/A
Signal STUCK AT 1
Complex NO DATA EXTRA DATA EARLY LATE INCORRECT INCONSISTENT
'd N\
Throttle_control
Sensor_1 T_A Calc_1
. Throttle_calc
B (o2 e Data coout
I
Switch_1
Output
Data | EMS_Data
ata_In
= @ CDInl
outl ChanData
EMS_Data Din Actuator
Data_dup Pos_Output .
out2 ChanData /™
\P2) CDIn2
EMS_Data Out
TPOut TPos
Sensor 2 T_A_Calc_2 OP1
.- s D3 fofreiee Data CDOut
Throttle_calc
Switch_2
J

Fig. 2. Revised proposal for the Throttle Control System decomposition

31vadn ON 10} Se s109)
-3 “Jequunu aouanbas ndino Aq
‘5100440 snoprezey oN ON | uo poePep erp plo Auy Buiinpayos paldnisiq | peslekep puueyd pio vlva alio
Ajpa10adxeun
S109)J0 Weo jiubis oN ON Wwesyiubis suoN Auy ainjre) buinpayss | parepdn ekep puueyd | 3Lvddn AILNVMNN
ZoeDVvV 1
'sa0ouanbasuod snopfezey oN ON | Ag pownsse [0nuo) B0 Auy
pesesjp.l ain|fej uoiedlu
"pParsIYIe aIn|e) 8.1eM10S Jorenoe amoiy) oS -NWIW09 Io Buljnpayos ndinO o198 ene
9j9|dwod uo uonde payiosds | ON | ‘PeIRe) Sjpuueyd yiog | palRiZz ORIV L ap|dwo) | MU erp puueyd 31vadn OoN
sfesodo.d ubsaq / uoireoynsnt | ¢ N s109)3 $10108j9-00 sesned uoireeq pIopBpINg

xo|dwo) :adA1oseg

[ood : [000104d Yred

eequey)d :adAl 100SVYIN

Td : lequnu "g'| mo|H

NOIS3A 43TT0HLNOD FTLLOHHL d3SINFY FHL JOSISATYNY FHL 4O INFJNOVEH V : Al F1dVL

"ubIsapal puswLLIOJay Indino o}

Sjuueyd wol} Apreledss passed uoIfed0| e awn ndinQ Agq peal
aJe sniess pue eep aouss ‘ubisap 811044} JO |0U0D /Y ainje) | Bulpssoxe ssedoud Aue | alojeq199eS Aq parep
uluaieyuluonipuodadel oL | SJA | Aew puueyd aandee@ | PUURYD Jo Josuss | Aq paloeie Bulinpayos | -dnilousniels puueyd viva aio
AJpa1oadxeun parep
S109)J0 Weo }iubis oN ON Weoubis auoN Auy ain|eyBulnpeyds | -dn snkls puueyd | 3Lvadn AILNVMNN
SIN3 01 aln|ej uomnesiu
‘Bejy ainjrey Aq peu pabe|s ainjeq -erd -NWWod Jo Buinpayos IndinO o13|0e|Rre
-gIyuIdouIs ‘Ueis 1ou |IMBIPIBA | ON | @moiyr o1 ndino oN Auy ap|dwo) | »ereu snes puueyd 31vadn ON
sfesodo.d uBisaq / uoieoysne | ¢ N S109443 S10139}J8-00 sesnen uoirelnaQ pIop8pINg

parJownuy : adA1oiseg

jood : j000304d yred

s :adA1 100SVYIN

Zd : Jequinu *q’| Mo

NOIS3A Y3 T104.LNOD FTLLOYHL TVILINIFHL JOSISATVYNY IHL 40 INFJWOVHH V © |11 319VL

V1. CONCLUSIONS

This paper has described the essential principles of a soft-
ware safety analysis method based on the application of a set
of guide words to suggest hypothetical failures in the flows
between components of a system.

The method has been applied experimentally to area sys
tem of moderate size, both by its devel opers and by an inde-
pendent assessor. The results of thisstudy were encouraging,
demonstrating the applicability of the method at early stages
of system development and its ability to provide useful input
to later stages of design elaboration. The case-study itself
was of an agrospace system, but the example above is tech-
nicaly extremely similar and representative of the type of
results produced.

The work involved in analysing the case-study was not
excessive, and with suitable tool support would be further
reduced. We are now investigating the devel opment of a pro-
totypetool to support alarger trial applicationinan industria
environment. The information such atool must manage has
been identified, and we are currently attempting to define a
minimal essential functionality.

As along term goal, we hope that tools can be developed
which provide advanced support such as consistency check-
ing both within a single diagram and between the analyses
at different levels of the hierarchy, athough thiswill require
the development of aformal notation or structured language
representation of failure modes, causes and effects and the
precise meaning of guide words.

The method as described above appliesto asmaller portion
of the systems lifecycle than our ideal, and extension into ad-
ditional phases must be considered. In particular, we have not
yet included verification and validation activities in a study,
althoughwe believethat thisstyleof analysismay allow these
activitiesto commence at an earlier stage of devel opment than
is commonly achieved.

Although MASCOT has been used for most of the work
to date, our hopeisthat the method can be adapted with rel-
atively little effort to work with other design notations such
as HOOD. In common with most other safety analysis tech-
niques, our method isbased primarily on the consideration of
events, and we would like to investigate the potential for de-
veloping asimilar techniquefor astate based design approach
such as StateCharts.

ACKNOWLEDGEMENTS

This work was supported by British Aerospace under the
activitiesof the BAe Dependable Computing Systems Centre
at the University of York.

REFERENCES

[1] P. Fendlon, J. A. McDermid, M. Nicholson, and D. J.
Pumfrey, “Towards integrated safety analysis and de-
sign”, ACM Applied Computing Review, Aug. 1994, (To
appear).

[2] CISHEC, A Guide to Hazard and Operability Studies,
The Chemical Industry Safety and Health Council of the
Chemical Industries Association Ltd., 1977.

[3] T. Kletz, Hazop and Hazan: Identifying and Assess-
ing Process Industry Hazards, Institution of Chemical
Engineers, third edition, 1992.

[4] IMCOM, The Official Handbook of Mascot, Version
3.1, Joint IECCA and MUF Committee on Mascot, June
1987.

[5] D. J. Burns and R. M. Pitblado, “A modified HAZOP
methodology for safety critical system assessment”, in
Directionsin Safety-critical Systems: Proceedings of the
Safety-critical Systems Symposium, Bristol 1993, F. Red-
mill and T. Anderson, Eds. Feb. 1993, pp. 232-245,
Springer-Verlag.

[6] M. Chudleigh, “Hazard analysis using HAZOP: A case
study”, in Safecomp ‘93: Proceedings of the 12th In-
ternational Conference on Computer Safety, Reliability
and Security, Poznah-Kiekrz, Poland, J. Gorski, Ed., Oct.
1993, pp. 99-108.

[7] J. V. Earthy, “Hazard and operability studies as an ap-
proach to software safety assessment”, in |.E.E. Comput-
ing and Control Division Colloguiumon Hazard Analy-
sis. Nov. 1992, Ingtitutionof Electrical Engineers, Digest
No.: 1992/198.

[8] P.D.EzhilchdvanandS. K. Shrivastava, “A classification
of faultsinsystems’, University of Newcastle upon Tyne,
1989.

[9] A. Bondavalli and L. Simoncini, “Failure classification
with respect to detection”, in First Year Report, Task B:
Soecification and Design for Dependability, Volume 2.
ESPRIT BRA Project 3092: Predictably Dependable
Computing Systems, May 1990.

