Prediction and Diagnosis of the operation that failed may not be the source of failure.

The source of failure may have been propagated from earlier

Propagated Errors in Assembly operations.
i f i On-line diagnosis of these types of failures by human experts
SyStemS Usmg Virtual Factories causes costly downtime and maintenance. It was reported that

these unplanned maintenances cost around 200 billion dollars in
Cem M. Baydar the United States in 199@]. The aim of this paper is to discuss

mail- ) an efficient way of predicting and diagnosing propagated errors in
e-mail: cem-baydar@accentuate.com robotic assembly systems usiMytual Factoriesusing “off-line

Accenture Technology Labs, 3773 Willow Rd., programming.” Inoff-line programming any robotic system can

Northbrook, IL 60062-6212 be modeled virtually in 3D and the performance of the system can
be evaluated accurately from the simulations. Previous discus-

Kazuhiro Saitou sions on the off-line error prediction, diagnosis and recovery were

_mail- ; made in[4—7] and a method was proposed and evaluated using
€ m.all. kazu@umich.edu . . . this approach. This study involves the integration of this method
Assist. Prof. Department of Mechanical Engineering, 1y ysing a commercial assembly simulation software with several
University of Michigan, Ann Arbor, Ml 48109-2125 developed modules to build\drtual Factory. This structure will
enable us to predict unexpected propagated errors before the ac-
tual assembly operation takes place thus providing efficient means

Large-scale automated assembly systems are widely used in a Ogiagnosis Q”d recovery fo_r these types of fa_ilures when they
motive, aerospace and consumer electronics industries to obt4fdPPEN- In this study, five different types of failures are under
high quality products in less time. However, one disadvantage ¢ensideration and these are: grasping failures, sensor failures, col-
these automated systems is that they are composed of too miatg" rors, flawed parts and misplacement errors.

working parameters. Since it is not possible to monitor all thederevious Work

parameters during the assembly process, an undetected error ma . . .
propagate and result in a more critical detected error. In thiﬁh¥>reventlon of the propagated errors has been a great interest in

paper, a unique way of detecting and diagnosing these types.y automated recovery of robotic assembly systems. The estab-

failures by using Virtual Factories is discussed. A Virtual Factoqli_S ed techniques of Failure Mode and Effect Analyis1EA),

was developed by building and linking several software modulegu“ Tree AnalysiSFTA) and Event Tree AnalysiéETA) are

0 precic and tiagnose propagated efors. A . staonassefe 0EME 9 FUEA s usec o examine ) possbe coipe
b!y system was mod?Ied and a prewously discussed . off-line PISh the system. It is an important method to assure quality. FTA
diction and recovery” method was applied. The obtained results

showed that this method is capable of predicting propagated eagg Eal-li—lﬁrrgssi/nb: spstlé?;i %.F’:ri?:st(lje‘{glgmtﬂrgéim'n&ggfgl:eaifg:_
rors, which are too complex to solve for a human expert. ing the way in Whi)(/:h se\./eral failurespcan cause a 2in le outcome
[DOI: 10.1115/1.1411966 9 yin \ eral 1 : , '9
or a system failure. ETA is a ‘forward’ technique, which may be
used to examine the propagation of an initiating eventfailure)
) ) ) with the presence of a number of other events, failures, faults or
Keywords: Virtual Factories, Error Propagation, Error Diagno- conditions. These methods are used during the design stage of the
Sis assembly system in order to predict possible propagated failure
situations.
Probability theory is also used to analyze failure uncertainty.
Fuzzy methodology has been applied in fault diagnosis, safety and
; risk engineering and structural reliability. A qualitative approach
Introduction ; . . : :
) ) to the analysis of a failuréassuming the failure is a fuzzy ele-

Large-scale robotic assembly systems, which are composedny@ény is presented if10] by Cai. Rather than defining success
several stations, are widely used in automotive, aerospace & failure in binary states, a probability of failure is introduced
consumer electronics industries. The main advantage of these §¢$-each event.
tems is their performance of manufacturing high-quality products |shiji concentrated on examining the life-cycle engineering de-
in less tlme than the manual or semi-automated assembly ||ng®n [11,12. He proposed an effective representation scheme for
However, since these large-scale systems are composed of mag¥embly tasks by using a semantic network structure. The net-
automated components, there are too many working parameigisik is composed of components and subassembiieses and
during the operation phase and it is not possible to monitor all @fe relationships between the nodgisk). This representation
these parameters. This makes these systems vulnerable to any igiports to conduct service mode analy§MA) and life-cycle
turbations during the operation, which may result in unexpecteghalysis since it expresses the relations of the objects in an assem-
failures. _ _ _ bly explicitly.

The problem of having unexpected failures arises from the factseveral systems were developed in the literature based on the
that these failures cannot be predicted easily before the actyaticipated error propagation scenarios. Chang and DiCé8are
assembly process. These failures generally result from the propgoposed an algorithm for constructing and pruning failure propa-
gation of undetected errors during the assembly process. Accoggtion trees in manufacturing systems. The purpose of building a
ing to Abu-Hamdan and EI-Gizawjl], error-propagation is de- fajlure propagation tree is to identify possible failure causes and
fined as carrying an undetected error from a previous task aggiure sources to allow for a planning process to recover from the
coupling it with another error during a proceeding task. It is alsgrror. A computer-aided monitoring system for assembly was de-
stated in[2] that, when a failure is detected during an operatioReloped by Abu-Hamdan and El-Gizaw{]. The implemented

expert system for detection is composed of task precondition and

'Author is currently ~working at Accenture Technology Labstask execution monitoring parts and no assembly task is allowed
(Cecm-biygatr%"fcf:t“scpm  Simulation & Visualization Committee for ubl® proceed unless the preceding task has been successfully com-
o & ot ComTitee 2 P0pleted. It was claimed that error propagation was totally elimi-
NEERING. Manuscript received Apr. 2001; revised Aug. 2001. Associate Editor: $ated with this approach. However, this system is inefficient when
Szykman. there is a failure among the detection system components.
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The systems and methods discussed above depend on the pre
diction of failures by human experts so they do not cover most of
the propagation situations.

An off-line error prediction, diagnosis and recovery technique
was discussed previously [d—7]. This method uses a commer-
cial robotic assembly simulation software and Monte-Carlo simu-
lation[13] to predict possible failures during the assembly opera-
tion. It also uses Bayesian Reasonjid] to infer on the possible
type of failurds) and provide recovery logic based on the detected
symptoms. The method is composed of five steps:

Virtual Assembly
Software

Virtual
Detection
System

Virtual
Recovery
System

Virtual
Diagnosis
System

1 3D modeling of the assembly line using a commercial soft-
ware package.

2 Prediction of the error cases by using Monte-Carlo simula-
tion based on the statistical model of sensors, robots and
products.

3 Off-line error diagnosis using Bayesian Reasoning.

4 Off-line generation of robust error recovery logic using Ge-
netic Programming15].

5 Downloading the generated codes to the system controllerdfnted in this module. A sensor array is defined and it contains
prepare the system for automated recovery. information about each sensor’s state. When an error is detected,

The main advantage of this approach is that it provides suffurrent condition of the sensor array is passed to the diagnosis
cient means of gathering information about the probable errglodule to analyze the detected error.

situations during an assembly process and uses this informatio® Virtua! diagnosis moduleThis module uses the state of the

correctly to develop robust recovery plans. Since propagated gensor array to infer the possible failure reason. Based on the

rors cannot be predicted easily before the actual assembly proc%ée\éggorsﬁ/r:np;g:pmﬂgn?s tngezetrz)s?:gligaé tgebgl)ii?v\vl';% eBﬁ)yreZ?Qh
this method can be used to predict and diagnose pogsibfa- il 9
gated errorsin large-scale assembly systems. ailure type.

Fig. 1 Layout of the proposed virtual factory

Bel(F,)= P(Yo\F)*P(Fy) )

; P(Yo\F)*P(F)

Proposed Approach

The proposed system uses the previously discussed off-line er-
ror prediction, diagnosis and recovery method by building several|, the apove formula, the probability of having the specified
software modules and linking them to establish a Virtual Factony mniom for each failure is calculated, indicates the given
First, the assembly system is modeled in 3D. This model and t

. ; ptom from the sensor array aRd is the type of failure from
process parameters are inputted to the commercial software pagk: following failure array given in Table 1.

age. After that, possible error situations are identified by perform- ¢ fajjure, which has the highest belief value, is suggested as
ing Monte Carlo simulation. These obtained situations are stor reason after this calculation. However, in order to prevent

in a file in order to be used in the diagnosis stage. The next stageqrect automated recovery a threshold level for belief value is

is generating recovery codes. In this step, Genetic Programmifiginey. I the diagnosed situation’s belief value is greater than

[15] is used to generate controller codgs-6] in robot's lan-  ig threshold, system proceeds with automated recovery. If it is

guage. Final stage is developing modules for the Virtual Factofibeg than the threshold, system asks for user maintenance and the
The main module is the Virtual Assembly software, which 1'?nost possible failures are written into a log file.

responsible for simulating the complete assembly process. Thgynhen the system asks for user maintenance, an interactive re-

second module is the Virtual Detection module, which is used fgtorceq diagnosis system is initialized. This subsystem is in-
detecting the component failurégripper failures, sensor failures, onqed to be used on-line, after the system is prepared for the

etc). Third module is the Virtual Diagnosis module for diagnosingecovery process “off-line”. It enables the user to input further
errors. Fourth module is the Virtual Recovery module for applyingata hased on the manual diagnosis by entering the identified
the generated recovery codes. The factory structure is 9iven i rking and non-working components during the manual inspec-

Fig. 1 and the detailed explanation of each module is as followgy process. Based on this additional data, the situation can be

Structure of Virtual Factory. (a) Virtual assembly software re-diagnosed. The usage of this sub-system is demonstrated in
module This module is the commercial robotic simulation packcase studies. ) ) .
age and it includes the 3D model of the assembly system andd) Virtual recovery moduleThis module is used for applying
assembly process codes. It also contains the realistic modelsift recovery logic for the diagnosed failure. The outputs of the
assembly robots, fixtures and products to simulate the procéddual diagnosis module are passed to this module and based on
accurately. It is also possible to detect collision errors duriri€ failure type a strategy is followed for the recovery as shown in
the assembly process since this is an implemented feature in @€ 2. Each strategy contains one or more recovery codes. The
package. use of the appropriate code_depends on the point where the error
(b) Virtual detection moduleVirtual Detection module is used has been detected. Some failure types are dominant when multiple
for detecting the errors occurred during the assembly process efifors occurredi.e., when a grasping failure occurred due to a
assembly systems, there are two different monitoring types. THawed part and grasping, the system uses the recovery code to
first type is called continuous monitoring, which a parameter fispose the flawed partSeveral rules are implemented to the
monitored continuously throughout the complete assembly préy¥stem to recover from this type of possible scenarios.
cess. As an example, torque/force sensors are checked continu-
ously for collision detection. The second type is called discre .
monitoring, which a parameter is monitored at certain steps of t?%‘se Studies
assembly process. For example grasping sensors are checked duk- multi-station assembly system, which is responsible for
ing the part picking or releasing steps to ensure the processnisunting and welding workpieces together, is modeled using
completed successfully. Both types of monitoring are impléAorkspacd16] and shown in Fig. 2.
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Table 1 Failure array parameters

Failure Array = {d.e.f.g. h
d= Grasping Error
e= Collision Error
f= Sensor Failure
g= Misplacement Error

h=Flawed Parts v
!..t'u:nt-ﬂ
Table 2 Failure recovery strategies
Aszzembled P
Failure Type Strategy gy
Grasping Error Try to grasp or release again
Collision Error Use robust collision recovery
Sensor Failure Call maintenance
Misplacement Error Plckup the part and replace Fig.2 Modeled assembly system
Flawed Parts Dispose the part and proceed
The system is composed of three IRB 6400-type industrial ro- Table 3 Symptom array parameters

bots. The assembly process is as follows: At first, Rob-A picks up -
the cylindrical piece from the conveyor and inserts it into the hole | Symptom Array = {A, B, C,D. E.F}

of the second piece on the second station. Then, the welding robot A= Gripper Sensor of Rob-A

(Rob-B) approaches the assembled two pieces and welds those B= Torque/Force Sensor of Rob-A
two pieces together. After that, Rob-C picks up the welded piece C= Camera over the 1% Station
and places it on the fixture and all of the parts are welded together D= Gripper Sensor of Rob-B

by Rob-B. Finally the complete assembly is transferred on the
conveyor by Rob-C. During the assembly operation, two inspec-
tion cameras are used for the verification process. These cameras F= Camera over the fixture
are placed over the first station where Rob-A picks up the cylin-
drical piece and over the fixture respectively.

The elements in the modeled symptom array and their signal
codes are given in the following Tables 3 and 4. Each symptom

E= Torque/Force Sensor of Rob-B

parameter, except the cameras, gets 0 or 1 depending on the signal Table 4 Camera codes
feedback from the sensors. If there is a signal indicating an ab- .
normal situation, then the associated parameter gets 1. For the 1= Workpiece not grasped or released
inspection cameras the following codes are implemented as shown 2= Incomplete Assembly
in Table 4. 3= No parts

The failure array is designed to provide information on the 4= Part Jamming

possible failure types as discussed before in Table 2. As shown in
Table 5, all of the possible failure types of grasping and sensor
failures are implemented to the model. In grasping, failure code 6
is different from 7 in the sequence of failures. Since sequence of

failures is also important for the appropriate recovery these two Table 5 Failure codes
codes are different from each other. Grasping Failure Codes Sensor Failure Codes

Several parameters are sampled from__the assembly procs I- Rob-A Gripper Picking T 1. Camera 1
These parameters include robot repeatability for each robot, gr, - p - o

L . e D, 2: Rob-A Gripper Releasing 2: Gripper A

per reliability, gripper sensors reliability, sensor reliability for the 3 RobC Gri Picki 30 >
inspection cameras and dimensional tolerances of each pi — oD~ JIpper 'lc e 4" Ga.meraB
Each parameter and its distribution type are given in Table 6. T4 Rob-C Gripper Releasing - JTpper”
values in the parenthesis indicate the mean and the standard |__3: (Rob-A + Rob-C) Picking 5: Cam.1, Grip.A
ues of the associated parameter: 6: Rob-A Pick + Rob-C Release 6: Cam.l, Cam.2

Complete assembly process was simulated off-line 500( 7: Rob-C Release + Rob-A Pick 7: Cam.1, Grip.B
times. The belief value threshold level for automated recovery 8: (Rob-C + Rob-A) Release 8: Grip.A, Cam.2
taken as 0.8. During this simulation process several types of err 9: Grip.A, Grip.B
propagation were observed. 10: Cam.2, Grip.B

11: Cam.1, Cam.2, Grip.A
12: Cam.1, Grip.A, Grip.B
13: Cam.1, Cam.2, Grip.B
14: Grip.A, Grip.B, Cam.2

Propagation Resulted in Part Jamming at the Fixture. The
actual reason for this problem is Rob-A did not pick the cylindri
cal part and this was not detected either by camera-1 over the f
station or the Rob-A grasping sensor, since they are both malfur

tioning. Besides, second camera over the fixture was also deac 15: All of the sensors
it could not detect the incompletely assembled workpiece and k
cause of this, that part could not be transferred to the convey Collision Failure Codes
This type of error propagation caused part jamming at the fixtu 1: Collision at Station 1
during the next cycle — -
In StJhis case, ay collision error is detected at the fixture. Tk 2: Co]hgu')n at Stgtlon 2
sensor array passes the information to the diagnosis module, ir 3: Collision at Fixture
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Table 6 Sampled parameters and values Table 7 Output of virtual diagnosis module

Parameter: Nominal Value / Distribution: Diagnosed Failure:
Robot Repeatability 0.02 mm/ Normal (0, 0.067 mm) Belief Value 0.595
Grasping Ability Uniform (0.9) Grasping Failure Rob-C Gripper release failure
Gripper Sensor Uniform (0.99) Sensor Failures: Rob-C Gripper + Camera 2
Inspection Camera Uniform (0.99)
Peg 49.92 mm / Normal (0, 0.0106)
Hole 50.3 mm / Normal (0, 0169) Table 8 Output of interactive reinforced diagnosis
Diagnosed Failure:
cating that torque/force sensor of Rob-C detected collision. T Bel'ef,va]ue, 0.8817 - — -
state of the assembly system is shown in Fig. 3. At this point, it| Grasping Failure Rob-A Gripper picking failure
difficult for a human expert to diagnose the situation. The on| Sensor Failures: Cam.1, Gripper 1, Cam.2

input is from the torque/force sensor and there are other param-
eters to check thus there may be several different reasons for this
problem.

Information from the sensor array is diagnosed by the Virtual
Diagnosis module. The diagnosed failure reason and its bel
value are given in Table 7. As it can be seen from the table, t -
calculated belief value is less than the threshold value. If this cad&i@Pagation”
arises during the actual assembly operation, the system stops ani€ diagnosis and recovery of propagated errors are complex
asks for user maintenance and interactive reinforced diagnoSiace they cannot be predicted easily prior to the operation of the
system is initiated. At this step, further obtained data can be i@]_ssembly line. Several methods are used in the literature to predict
putted to the system. In order to simulate the situation, it is all€ Possible propagation of undetected errors using failure propa-

sumed that Rob-C gripper has been checked according to the tion trees, failure mode and effect analysis_ or using fuzzy quic.
tially proposed diagnose failure and it was found out th owever, these methods are not adequate since they do not incor-

component is working properly. Re-diagnosing based on this s porate the 3D model of the system and they do not cover all of the

ther data revealed another reason of failure as shown in TableQﬁls‘::'l'blede”or scenarios. both hard d soft hnol
As it can be observed from Table 8, this time the correct reason! '€ advancements in both hardware and software technology

for the failure has been found. The belief value is 0.8817. A[€vealed the concept of usiMytual Factoriesbefore building the
though it is less than the threshold, the system is already ﬁﬂa""ﬂes- These systems can s_lmulate the process repetitively in
manual recovery mode so it can be recovered. less time to predict the unpredictable, propagated errors before

This case study revealed the fact that although propaga\ted&\‘?y occur. 'I;jhey can allso be used for developing and verifying
rors occur in less likelihood, they cannot be avoided. Although tif829n0sIS and recovery 10gic. . . .
modeled system is composed of relatively fewer componentsA Virtual Factory was developed to predict and diagnose this

when compared to the large-scale auto-body assembly or c&ffe of failures before they happen. Several modules are devel-
sumer electronics lines, it is still difficult to analyze the systenfP&d @ parts of this factory. The system is capable of detecting,

Therefore, the developed Virtual Factory aids in prediction, diaﬁagnosing and recovering possible failures, which may occur dur-

nosis and recovery of the complex errors, which may be propa9d thedreal pcrjocess. he validitv and the effecti i
gated during the assembly process. In order to demonstrate the validity and the effectiveness of the

proposed system, a multi-station assembly system is modeled and
) a previously discussed “off-line prediction and recovery” method
Conclusions was applied. The obtained results showed that the method is ca-

Large-scale robotic assembly systems are used in industry 8&PIe of predicting propagated errors, which are too complex to
tensively. However, these systems are composed of many comp@lve for @ human expert. Following advantages of using a Virtual
nents and it is not possible to monitor all the parameters of theSBCtOry are identified after conducting case studies:

components during the assembly process. For example, an unde-The developed Virtual Factory is capable of predicting and
diagnosing propagated errors, which may cause problems al-
though their likelihood of occurrence may be less.

» The Virtual Diagnosis module can be embedded into the real
line and used for automated diagnosis.

» The developed interactive reinforced diagnosis system can
help reducing downtime of the assembly system when
manual diagnosis is required.

ted error in upstream of the line can cause a detectable error in
ther downstream of a line which is called theerfor-

It is believed that this approach will decrease the costly down-
time for failure inspection and recovery. The future work will
involve examining the complex failure scenarios, which require
the coordination of multiple agents for recovery and automated
generation of recovery logic for this type of failures.
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